skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Delgado‐Baquerizo, Manuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Use of synthetic microbial communities (SynComs) is a promising approach that harnesses nature‐based solutions to support soil fertility and food security, mitigate climate change impacts, and restore terrestrial ecosystems. Several microbial products are in the market, and many others are at different stages of development and commercialization. Yet, we are still far from being able to fully harness the potential and successful applications of such biotechnological tools. The limited field efficiency and efficacy of SynComs have significantly constrained commercial opportunities, resulting in market growth falling below expectations. To overcome these challenges and manage expectations, it is critical to address current limitations, failures, and potential environmental consequences of SynComs. In this Viewpoint, we explore how using multiple eco‐evolutionary theories can inform SynCom design and success. We further discuss the current status of SynComs and identify the next steps needed to develop and deploy the next generation of tools to boost their ability to support multiple ecosystem services, including food security and environmental sustainability. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Soil organisms represent the most abundant and diverse organisms on the planet and support almost every ecosystem function we know, and thus impact our daily lives. Some of these impacts have been well-documented, such as the role of soil organisms in regulating soil fertility and carbon sequestration; processes that have direct implications for essential ecosystem services including food security and climate change mitigation. Moreover, soil biodiversity also plays a critical role in supporting other aspects from One Health—the combined health of humans, animals, and the environment—to the conservation of historic structures such as monuments. Unfortunately, soil biodiversity is also highly vulnerable to a growing number of stressors associated with global environmental change. Understanding how and when soil biodiversity supports these functions, and how it will adapt to changing environmental conditions, is crucial for conserving soils and maintaining soil processes for future generations. In this Essay, we discuss the fundamental importance of soil biodiversity for supporting multiple ecosystem services and One Health, and further highlight essential knowledge gaps that need to be addressed to conserve soil biodiversity for the next generations. 
    more » « less
    Free, publicly-accessible full text available March 27, 2026
  3. Montane ecosystems are crucial for maintaining global biodiversity and function that sustain life on our planet. Yet, these ecosystems are highly vulnerable to changing temperatures and may undergo critical transitions under ongoing climate change. What we do not know is to what extent montane biodiversity and ecosystem services will respond to local temperature variations in a gradual versus abrupt manner across global environments. To fill this knowledge gap, we conducted a global synthesis, including 4,462 observations from 290 elevation gradients, to investigate how biodiversity (spanning animals and plants) and ecosystem services (including plant production, soil carbon, and fertility) respond to local temperature variations along elevation gradients. We found that nearly one-third of these gradients exhibited abrupt shifts in multiple biodiversity and ecosystem services in response to local variations in temperature along elevation gradients. More specifically, we showed that once a particular local temperature level (~10 °C for mean annual temperature) was reached, even small increases in temperature resulted in dramatic variations in biodiversity and ecosystem services. We further showed that those abrupt shifts in response to local temperature increases were commonly positive for plant and animal diversity, as well as plant production, while soil carbon and fertility more commonly exhibit negative abrupt trends. Our work, based on the most comprehensive empirical evidence available so far, reveals the pervasive abrupt responses of biodiversity and ecosystem services to local temperature variations in montane ecosystems worldwide, highlighting the highly sensitive nature of montane ecosystems in the context of climate change. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  4. Global warming is expected to significantly impact the soil fungal and bacterial microbiomes, yet the predominant ecological response of microbial taxa—whether an increase, decrease, or no change—remains unclear. It is also unknown whether microbial taxa from different evolutionary lineages exhibit common patterns and what factors drive these changes. Here, we analyzed three mid‐term (> 5 years) warming experiments across contrasting dryland and temperate‐boreal ecosystems, encompassing over 500 topsoil samples collected across multiple time points. We found that warming altered the relative abundance of microbial taxa, with both increases and decreases over time. For instance, the relative abundance of bacterial and fungal taxa responding to warming (increase or decrease) accounted for 35.9% and 42.9% in the dryland ecosystem, respectively. Notably, taxa within the same phylum exhibited divergent responses to warming. These ecological shifts were linked to factors such as photosynthetic cover and fungal lifestyle, both of which influence soil functions. Overall, our findings indicate that soil warming can reshape a significant fraction of the microbial community across ecosystems, potentially driving changes in soil functions. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. Free, publicly-accessible full text available January 1, 2026
  6. Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. 
    more » « less
  7. Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services. 
    more » « less
  8. Abstract BackgroundRock-dwelling microorganisms are key players in ecosystem functioning of Antarctic ice free-areas. Yet, little is known about their diversity and ecology, and further still, viruses in these communities have been largely unexplored despite important roles related to host metabolism and nutrient cycling. To begin to address this, we present a large-scale viral catalog from Antarctic rock microbial communities. ResultsWe performed metagenomic analyses on rocks from across Antarctica representing a broad range of environmental and spatial conditions, and which resulted in a predicted viral catalog comprising > 75,000 viral operational taxonomic units (vOTUS). We found largely undescribed, highly diverse and spatially structured virus communities which had predicted auxiliary metabolic genes (AMGs) with functions indicating that they may be potentially influencing bacterial adaptation and biogeochemistry. ConclusionThis catalog lays the foundation for expanding knowledge of virosphere diversity, function, spatial ecology, and dynamics in extreme environments. This work serves as a step towards exploring adaptability of microbial communities in the face of a changing climate. 
    more » « less